Course Overview
Very different from what is taught in standard courses, “Fundamentals of Current Flow” provides a unified conceptual framework for ballistic and diffusive transport of both electrons and phonons – essential information for understanding nanoelectronic devices.
The traditional description of electronic motion through a solid is based on diffusive transport, which means that the electron takes a random walk from the source to the drain of a transistor, for example. However, modern nanoelectronic devices often have channel lengths comparable to a mean free path so that electrons travel ballistically, or “like a bullet.”
Verified/Master’s students taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software. To be sure your computer is compatible, see Proctortrack Technical Requirements.
Nanoscience and Technology MicroMasters ®
Fundamentals of Current Flow is one course in a growing suite of unique, 1-credit-hour short courses developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters® program in Nanoscience and Technology.
For further information and other courses offered, see the Nanoscience and Technology MicroMasters® page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.
What You’ll Learn
- Ballistic and diffusive conductance
- Density of states
- Number of modes
- Conductivity
- Landauer formula

MicroMasters® Program in Nano-Science and Technology
Nanoelectronic devices are an integral part of our life, including the billion-plus transistors in every smartphone, each of which has an active region that is only a few hundred atoms in length. This previously-unimaginable scale has become possible by thoroughly understanding the critical mechanisms that take place at the scale of individual atoms and molecules. Similarly, nanophotonic devices are built into the core of modern life through technologies such as fiber-optic communications, also known as the backbone of the internet.
Prerequisites
Undergraduate degree in engineering or the physical sciences, knowledge of differential equations and linear algebra.
Who can take this course?
Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.
Meet Your Instructors

Supriyo Datta

Shuvro Chowdhury
Course Overview
Very different from what is taught in standard courses, “Fundamentals of Current Flow” provides a unified conceptual framework for ballistic and diffusive transport of both electrons and phonons – essential information for understanding nanoelectronic devices.
The traditional description of electronic motion through a solid is based on diffusive transport, which means that the electron takes a random walk from the source to the drain of a transistor, for example. However, modern nanoelectronic devices often have channel lengths comparable to a mean free path so that electrons travel ballistically, or “like a bullet.”
Verified/Master’s students taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software. To be sure your computer is compatible, see Proctortrack Technical Requirements.
Nanoscience and Technology MicroMasters ®
Fundamentals of Current Flow is one course in a growing suite of unique, 1-credit-hour short courses developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters® program in Nanoscience and Technology.
For further information and other courses offered, see the Nanoscience and Technology MicroMasters® page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.
What You’ll Learn
- Ballistic and diffusive conductance
- Density of states
- Number of modes
- Conductivity
- Landauer formula

MicroMasters® Program in Nano-Science and Technology
Nanoelectronic devices are an integral part of our life, including the billion-plus transistors in every smartphone, each of which has an active region that is only a few hundred atoms in length. This previously-unimaginable scale has become possible by thoroughly understanding the critical mechanisms that take place at the scale of individual atoms and molecules. Similarly, nanophotonic devices are built into the core of modern life through technologies such as fiber-optic communications, also known as the backbone of the internet.
Prerequisites
Undergraduate degree in engineering or the physical sciences, knowledge of differential equations and linear algebra.
Who can take this course?
Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.
Meet Your Instructors

Supriyo Datta
