Course Overview

Very different from what is taught in standard courses, “Fundamentals of Current Flow” provides a unified conceptual framework for ballistic and diffusive transport of both electrons and phonons – essential information for understanding nanoelectronic devices.

The traditional description of electronic motion through a solid is based on diffusive transport, which means that the electron takes a random walk from the source to the drain of a transistor, for example. However, modern nanoelectronic devices often have channel lengths comparable to a mean free path so that electrons travel ballistically, or “like a bullet.”

Verified/Master’s students taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software. To be sure your computer is compatible, see Proctortrack Technical Requirements.

Nanoscience and Technology MicroMasters ®

Fundamentals of Current Flow is one course in a growing suite of unique, 1-credit-hour short courses developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters® program in Nanoscience and Technology.

For further information and other courses offered, see the Nanoscience and Technology MicroMasters® page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.

What You’ll Learn

  • Ballistic and diffusive conductance
  • Density of states
  • Number of modes
  • Conductivity
  • Landauer formula

Prerequisites

Undergraduate degree in engineering or the physical sciences, knowledge of differential equations and linear algebra.

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Meet Your Instructors

Supriyo Datta - Pearson Advance

Supriyo Datta

Thomas Duncan Distinguished Professor of Electrical and Computer Engineering, NAE member at Purdue University - https://nanohub.org/groups/supriyodatta Supriyo Datta started his career in ultrasonics, but since 1985 has focused on current flow in nanoscale electronic devices. The approach pioneered by his group for the description of quantum transport has been widely adopted in the field of nano electronics and he was elected to the National Academy of Engineering (NAE) for this work. This approach, combining the non-equilibrium Green function (NEGF) formalism of many-body physics with the Landauer formalism from mesoscopic physics, is described in his books Electronic Transport in Mesoscopic Systems (Cambridge 1995), Quantum Transport: Atom to Transistor (Cambridge 2005) and Lessons from Nanoelectronics (World Scientific 2012). He is also well-known for his contributions to spin electronics and molecular electronics.
Shuvro Chowdhury - Pearson Advance

Shuvro Chowdhury

PhD Student at Purdue University Shuvro Chowdhury received his Bachelor of Science in Electrical and Electronic Engineering from Bangladesh University of Engineering and Technology in 2011. He got his Master of Science in Electrical and Computer Engineering from the same university in 2014. Currently, he is pursuing a PhD degree in the department of Electrical and Computer Engineering at Purdue University. His current research interest includes solving quantum many body problems with artificial neural network. His previous research was on analytical modeling of current in junctionless double gate MOSFETs. He also did some research in quantum computing.

About This Course:

In the course, we will examine the concept of IoT. We will look at the ‘things’ that make up the Internet of Things, including how those components are connected together, how they communicate, and how they value add to the data generated. We will also examine cybersecurity and privacy issues, and highlight how IoT can optimize processes and improve efficiencies in your business.

What You’ll Learn:

  • Gain a deep appreciation of the IoT
  • Understand what constitutes an IoT design solution
  • Start to grow the seeds of IoT ideas within your field and area of expertise

Meet Your Instructors:

Iain Murray AM

Iain is an academic in the School of Electrical Engineering, Computing and Mathematical Sciences at Curtin University, specialising in networking, embedded systems and assistive technology. He received his B.Eng(Hons) and Ph.D. in Computer Systems Engineering from Curtin in 1998, and 2008, respectively. He is a Curtin Academy Fellow and was appointed a Member of the Order of Australia for his contributions to education in 2016.

Siavash Khaksar

Siavash is an academic in the School of Electrical Engineering, Computing and Mathematical Sciences at Curtin University. He received his B.Sci in Electrical and Electronics Engineering from Azad University, Science and Research branch in Fars in 2012, his M.Eng in Electrical Engineering with a focus on Embedded Systems from Curtin University in 2015, and is currently undertaking post-graduate research focusing on assistive technology and use of motion sensors and machine learning to help children with cerebral palsy. He specialises in embedded systems and digital hardware-software codesign.

About MIT Horizon:

MIT Horizon is an expansive content library built to help you explore emerging technologies. Through easy-to-understand lessons, you’ll be guided through the complexities of the latest technologies and simplified expert-level concepts. Designed for both technical and non-technical learners, you can examine bite-size content that can lead to maximum career outcomes.

For a limited time, gain access to the complete MIT Horizon library.

Register today for exclusive entry.

About This Course:

The Internet of Things (IoT) is expanding at a rapid rate, and it is becoming increasingly important for professionals to understand what it is, how it works, and how to harness its power to improve business. This introductory course will enable learners to leverage their business and/or technical knowledge across IoT-related functions in the workplace.

In the course, we will examine the concept of IoT. We will look at the ‘things’ that make up the Internet of Things, including how those components are connected together, how they communicate, and how they value add to the data generated. We will also examine cybersecurity and privacy issues, and highlight how IoT can optimize processes and improve efficiencies in your business.

What You’ll Learn:

  • Gain a deep appreciation of the IoT
  • Understand what constitutes an IoT design solution
  • Start to grow the seeds of IoT ideas within your field and area of expertise

Meet Your Instructors:

Iain Murray AM

Iain is an academic in the School of Electrical Engineering, Computing and Mathematical Sciences at Curtin University, specialising in networking, embedded systems and assistive technology. He received his B.Eng(Hons) and Ph.D. in Computer Systems Engineering from Curtin in 1998, and 2008, respectively. He is a Curtin Academy Fellow and was appointed a Member of the Order of Australia for his contributions to education in 2016.

Siavash Khaksar

Siavash is an academic in the School of Electrical Engineering, Computing and Mathematical Sciences at Curtin University. He received his B.Sci in Electrical and Electronics Engineering from Azad University, Science and Research branch in Fars in 2012, his M.Eng in Electrical Engineering with a focus on Embedded Systems from Curtin University in 2015, and is currently undertaking post-graduate research focusing on assistive technology and use of motion sensors and machine learning to help children with cerebral palsy. He specialises in embedded systems and digital hardware-software codesign.

Course Overview

Very different from what is taught in standard courses, “Fundamentals of Current Flow” provides a unified conceptual framework for ballistic and diffusive transport of both electrons and phonons – essential information for understanding nanoelectronic devices.

The traditional description of electronic motion through a solid is based on diffusive transport, which means that the electron takes a random walk from the source to the drain of a transistor, for example. However, modern nanoelectronic devices often have channel lengths comparable to a mean free path so that electrons travel ballistically, or “like a bullet.”

Verified/Master’s students taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software. To be sure your computer is compatible, see Proctortrack Technical Requirements.

Nanoscience and Technology MicroMasters ®

Fundamentals of Current Flow is one course in a growing suite of unique, 1-credit-hour short courses developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters® program in Nanoscience and Technology.

For further information and other courses offered, see the Nanoscience and Technology MicroMasters® page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.

What You’ll Learn

  • Ballistic and diffusive conductance
  • Density of states
  • Number of modes
  • Conductivity
  • Landauer formula

Prerequisites

Undergraduate degree in engineering or the physical sciences, knowledge of differential equations and linear algebra.

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Meet Your Instructors

Supriyo Datta - Pearson Advance

Supriyo Datta

Thomas Duncan Distinguished Professor of Electrical and Computer Engineering, NAE member at Purdue University - https://nanohub.org/groups/supriyodatta Supriyo Datta started his career in ultrasonics, but since 1985 has focused on current flow in nanoscale electronic devices. The approach pioneered by his group for the description of quantum transport has been widely adopted in the field of nano electronics and he was elected to the National Academy of Engineering (NAE) for this work. This approach, combining the non-equilibrium Green function (NEGF) formalism of many-body physics with the Landauer formalism from mesoscopic physics, is described in his books Electronic Transport in Mesoscopic Systems (Cambridge 1995), Quantum Transport: Atom to Transistor (Cambridge 2005) and Lessons from Nanoelectronics (World Scientific 2012). He is also well-known for his contributions to spin electronics and molecular electronics.
Shuvro Chowdhury - Pearson Advance

Shuvro Chowdhury

PhD Student at Purdue University Shuvro Chowdhury received his Bachelor of Science in Electrical and Electronic Engineering from Bangladesh University of Engineering and Technology in 2011. He got his Master of Science in Electrical and Computer Engineering from the same university in 2014. Currently, he is pursuing a PhD degree in the department of Electrical and Computer Engineering at Purdue University. His current research interest includes solving quantum many body problems with artificial neural network. His previous research was on analytical modeling of current in junctionless double gate MOSFETs. He also did some research in quantum computing.

About this course:

Photovoltaic systems are often placed into a microgrid, a local electricity distribution system that is operated in a controlled way and includes both electricity users and renewable electricity generation. This course deals with DC and AC microgrids and covers a wide range of topics, from basic definitions, through modelling and control of AC and DC microgrids to the application of adaptive protection in microgrids. You will master various concepts related to microgrid technology and implementation, such as smart grid and virtual power plant, types of distribution network, markets, control strategies and components. Among the components special attention is given to operation and control of power electronics interfaces.

What You Will Learn:

  • Difference between a microgrid, a passive distribution grid and a virtual power plant
  • Ancillary services provided by microgrids and PV
  • Operation of centralized and decentralized control, forecasting, and evaluation of different market policies through a case study
  • Operation of active power control and voltage regulation
  • Different layouts and topologies of microgrids and power electronic components, and the role of power electronics converters in microgrids
  • Microgrid protection, adaptive protection, and the consequences of using a fault current source and fault current limitation
  • Main motivations and challenges for the implementation of DC microgrids
  • Verified learners will have the added benefit of evaluating different strategies to control multiple inverters and to analyze local control to improve stability.

Prerequisites

  • Bachelor’s degree in Science or Engineering and/or the successful completion of PV1xPV2xand PV3x (or firm grasp of their content).
  • In order to carry out the assignments in the course, you will need to install a free software which requires a 64-bit computer, 4 GB ram and 5-6 GB of hard-drive space.
  • Operating systems supported: Window 7 or newer, OSX 10.10 (Yosemite) or newer, Ubuntu 14.04 or 16.04.

Meet Your Instructors:

Seyedmahdi Izadkhast

Postdoctoral fellow researcher, DC Systems, Energy Conversion and Storage at TU Delft
Seyedmahdi Izadkhast received PhD degrees within SETS doctorate from Delft University of Technology, The Netherlands; Comillas Pontifical University, Spain; KTH Royal Institute of Technology, Sweden. Since January 2016, Dr. S. Izadkhast has been working as a postdoctoral research fellow with DC Systems, Energy Conversion and Storage (DCE&S) at the Delft University of Technology, where he is also the lecturer of "AC & DC Microgrids" course, and OnlineSolar and instructor/project leader of "Systems Engineering" course. Moreover, he has been involved in numerous international research projects like GRID4EU, NICE GRID, CSGriP, and DCSMART ERA-Net SG+.

Laura Ramirez

Assistant Professor of Energy Conversion at TU Delft
Laura Ramirez is an Assistant Professor of Energy Conversion with the Department of Electrical Sustainable Energy of Delft University of Technology and DC Systems, Energy Conversion and Storage group (Faculty of Electrical Engineering, Mathematics and Computer Science). In 2003, she earned her Bachelor’s degree in Electrical Engineering and her Bachelor’s degree in Music with a major in Piano at the Universidad de Costa Rica (but she cannot improvise). She graduated with honors from her M.Sc. studies in Electrical Power Engineering at Delft University of Technology in 2007. Laura worked on her PhD project from September 2007 to December 2011. In 2013, she was awarded with the Erasmus Energy Science Award.

Pavol Bauer

Full Professor, Department of Electrical Sustainable Energy at TU Delft
Pavol Bauer is a full Professor in the Department of Electrical Sustainable Energy of Delft University of Technology and head of DC Systems, Energy Conversion and Storage group. He earned his Master’s degree in Electrical Engineering at the Technical University of Kosice (‘85) and Ph.D. from Delft University of Technology (’95). He has worked on many projects for industry, focusing on solar wind and wave energy, power electronic applications for power systems and electric mobility. He is a Senior Member of the IEEE (’97), former chairman of Benelux IEEE Joint Industry Applications Society, Power Electronics and Power Engineering Society chapter, chairman of the Power Electronics and Motion Control (PEMC) council, member of the Executive Committee of European Power Electronics Association (EPE).

About this course:

In this course you will learn how to turn solar cells into full modules; and how to apply full modules to full photovoltaic systems.

The course will widely cover the design of photovoltaic systems, such as utility scale solar farms or residential scale systems (both on and off the grid). You will learn about the function and operation of various components including inverters, batteries, DC-DC converters and their interaction with both the modules and the grid.

What You Will Learn:

  • How to design a PV system ranging from a residential rooftop system to a utility scale solar farm taking in to account:
  • The effects of the position of the sun and solar irradiance on PV module performance Components of a PV system:
  • PV modules, inverters, DC-DC converters, batteries, charge controllers and cables
  • The economics and impact on the grid of PV systems
  • Audit learners can develop their skills and knowledge in relation to the above learning objectives by having access to the video lectures, a limited number of practice exercises and discussion forums.
  • Verified learners are offered a number of study tools to demonstrate they have mastered the learning objectives. They will have access to all exercises: practice, graded and exams.

Prerequisites

  • Bachelor’s degree in Science or Engineering and/or the successful completion of PV1x and PV2x (or firm grasp of their content).

Meet Your Instructors:

Olindo Isabella

Assistant Professor, Photovoltaics Material and Devices at TU Delft
Dr. Olindo Isabella is assistant professor in the Photovoltaics Material and Devices group at the TU Delft faculty of Electrical Engineering, Mathematics and Computer Science. Between 2011 and 2012 he was visiting researcher at AIST (Tsukuba, Japan) working on high performance thin-film a-SiGe:H absorber for multi-junction thin-film silicon solar cells. He received his PhD (cum laude) from Delft University of Technology in 2013 for his research on light management in thin-film silicon solar cells, overseeing activities on c-Si solar cells and PV systems. He has contributed to two scientific books, has 3 patent applications and is co-author of the book “Solar Energy. The physics and engineering of photovoltaic conversion technologies and systems.” He developed and manages the Lab course on photovoltaics offering students hands-on experience with all aspects of photovoltaic systems.

Ravi Vasudevan

Postdoctoral Researcher with the Photovoltaic Materials and Devices at TU Delft
Dr. Ravi Vasudevan obtained his MSc and PhD from the Delft University of Technology. He has researched solar energy and is an expert in silicon heterojunction solar cells. He also is experienced in solar energy education. He has given many lecturers at the BSc and MSc level for various solar-based courses at TU Delft. He also helped to develop the MSc course in PV Systems taught at TU Delft and is in charge of managing the creation of the Solar Energy Engineering ProfEd series hosted on the edX platform.

About this course:

The technologies used to produce solar cells and photovoltaic modules are advancing to deliver highly efficient and flexible solar panels. In this course you will explore the main PV technologies in the current market. You will gain in-depth knowledge about crystalline silicon based solar cells (90% market share) as well as other emerging technologies including CdTe, CIGS and Perovskites. This courseprovides answers to the questions: How are solar cells made from raw materials? Which technologies have the potential to be the major players for different applications in the future?

What You Will Learn:

  • Design concepts and fabrication processes of various photovoltaic technologies, In-depth knowledge on the entire crystalline silicon solar cell landscape including, Market-leading polycrystalline based cells
  • High efficiency/cutting edge monocrystalline based solar cells
  • Application of thin film solar cells, like CIGS, CdTe, thin-film silicon, Perovskites, Concentrated PV and space applications for III/V semiconductor based solar cells.
  • Audit learners can develop their skills and knowledge in relation to the above learning objectives by having access to the video lectures, a limited number of practice exercises and discussion forum.
  • Verified learners are offered a number of study tools to demonstrate they have mastered the learning objectives. They will have access to all exercises: practice, graded and exam questions.

Prerequisites

  • Bachelor’s degree in Science or Engineering and/or the successful completion of PV1x (or firm grasp of its content).

Meet Your Instructors:

Arno Smets

Professor, Electrical Engineering, Mathematics and Computer Science at Delft University of Technology Dr. Arno H.M. Smets is Professor in Solar Energy in the Photovoltaics Material and Devices group at the faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. From 2005-2010 he worked at the Research Center for Photovoltaics at the National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba Japan. His research work is focused on processing of thin silicon films, innovative materials and new concepts for photovoltaic applications. He is lecturer for BSc and MSc courses on Photovoltaics and Sustainable Energy at TU Delft. His online edX course on Solar Energy attracted over 150,000 students worldwide. He is co-author of the book “Solar Energy. The physics and engineering of photovoltaic conversion technologies and systems.” Professor Smets was awarded the first ever edX Prize for Exceptional Contributions to Online Teaching and Learning for his Solar Energy course. To learn more, visit here.

Miro Zeman

Head of the Electrical Sustainable Energy department at TU Delft
Professor Miro Zeman is the head of the Electrical Sustainable Energy department at the TU Delft faculty of Electrical Engineering, Mathematics and Computer Science. His research interests encompass the development of novel materials and concepts for the improvement of thin-film silicon solar cell performance and modeling of devices based on amorphous semiconductors. Since receiving his PhD in 1989 he was in charge of more than 30 Dutch and 6 European projects dealing with the development of thin-film solar cells and technology for their fabrication. He has authored and co-authored more than 270 scientific publications; he contributed to 3 scientific books. He acts as a reviewer for several scientific journals. He regularly attends world conferences on advanced materials and photovoltaics in Europe, USA, Japan and China, where he contributed with more than 80 presentations. He is co-author of the book “Solar Energy. The physics and engineering of photovoltaic conversion technologies and systems.”

René van Swaaij

Associate Professor, Photovoltaics Material and Devices at TU Delft
Dr. René van Swaaij is associate professor in the Photovoltaics Material and Devices group at the TU Delft faculty of Electrical Engineering, Mathematics and Computer Science. He is the programme director of the master programme Sustainable Energy Technology. His research interests lie mainly with the processing of silicon based solar cells and the physics underlying the operation of these cells. He is in charge of several projects in the field of thin-film silicon solar cells and lectures on semiconductor device physics in BSc and MSc courses. René has authored and co-authored more than 100 journal and conference papers is and is co-author of the book “Solar Energy. The physics and engineering of photovoltaic conversion technologies and systems.”

About This Course:

In this course you will gain access to two final exams. The first exam covers the content of PV1x and PV2x, and the second exam covers the content of PV3x and PV4x. For each exam you are given two attempts. You will be given exam preparation material to help you prepare.

The exams are offered in the format of proctored exams. To read more about proctored exam and to review the technical requirements, review the edX’s help pages.

What You Will Learn:

  • The various methods of converting solar energy into electricity, heat and solar fuels
  • The physical working principles of photovoltaic conversion in solar cells
  • How to recognize and describe the various solar cell technologies, their current status and future technological challenges
  • How to analyze the performance of solar cells and modules How to design a complete photovoltaic system for any particular application on paper

Prerequisites:

  • Basic knowledge of physics and mathematical skills, such as integration and differentiation, are preferred.

Meet Your Instructors:

Arno Smets

Professor, Electrical Engineering, Mathematics and Computer Science at Delft University of Technology Dr. Arno H.M. Smets is Professor in Solar Energy in the Photovoltaics Material and Devices group at the faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. From 2005-2010 he worked at the Research Center for Photovoltaics at the National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba Japan. His research work is focused on processing of thin silicon films, innovative materials and new concepts for photovoltaic applications. He is lecturer for BSc and MSc courses on Photovoltaics and Sustainable Energy at TU Delft. His online edX course on Solar Energy attracted over 150,000 students worldwide. He is co-author of the book “Solar Energy. The physics and engineering of photovoltaic conversion technologies and systems.” Professor Smets was awarded the first ever edX Prize for Exceptional Contributions to Online Teaching and Learning for his Solar Energy course. To learn more, visit here.

Miro Zeman

Head of the Electrical Sustainable Energy department at TU Delft
Professor Miro Zeman is the head of the Electrical Sustainable Energy department at the TU Delft faculty of Electrical Engineering, Mathematics and Computer Science. His research interests encompass the development of novel materials and concepts for the improvement of thin-film silicon solar cell performance and modeling of devices based on amorphous semiconductors. Since receiving his PhD in 1989 he was in charge of more than 30 Dutch and 6 European projects dealing with the development of thin-film solar cells and technology for their fabrication. He has authored and co-authored more than 270 scientific publications; he contributed to 3 scientific books. He acts as a reviewer for several scientific journals. He regularly attends world conferences on advanced materials and photovoltaics in Europe, USA, Japan and China, where he contributed with more than 80 presentations. He is co-author of the book “Solar Energy. The physics and engineering of photovoltaic conversion technologies and systems.”

René van Swaaij

Associate Professor, Photovoltaics Material and Devices at TU Delft
Dr. René van Swaaij is associate professor in the Photovoltaics Material and Devices group at the TU Delft faculty of Electrical Engineering, Mathematics and Computer Science. He is the programme director of the master programme Sustainable Energy Technology. His research interests lie mainly with the processing of silicon based solar cells and the physics underlying the operation of these cells. He is in charge of several projects in the field of thin-film silicon solar cells and lectures on semiconductor device physics in BSc and MSc courses. René has authored and co-authored more than 100 journal and conference papers is and is co-author of the book “Solar Energy. The physics and engineering of photovoltaic conversion technologies and systems.”

Olindo Isabella

Assistant Professor, Photovoltaics Material and Devices at TU Delft
Dr. Olindo Isabella is assistant professor in the Photovoltaics Material and Devices group at the TU Delft faculty of Electrical Engineering, Mathematics and Computer Science. Between 2011 and 2012 he was visiting researcher at AIST (Tsukuba, Japan) working on high performance thin-film a-SiGe:H absorber for multi-junction thin-film silicon solar cells. He received his PhD (cum laude) from Delft University of Technology in 2013 for his research on light management in thin-film silicon solar cells, overseeing activities on c-Si solar cells and PV systems. He has contributed to two scientific books, has 3 patent applications and is co-author of the book “Solar Energy. The physics and engineering of photovoltaic conversion technologies and systems.” He developed and manages the Lab course on photovoltaics offering students hands-on experience with all aspects of photovoltaic systems.

About this course

Want to learn how your radio works? Wondering how to implement filters using resistors, inductors, and capacitors? Wondering what are some other applications of RLC and CMOS circuits? This free circuits course, taught by edX CEO and MIT Professor Anant Agarwal and MIT colleagues, is for you.

The third and final online Circuits and Electronics courses is taken by all MIT Electrical Engineering and Computer Science (EECS) majors.

Topics covered include: dynamics of capacitor, inductor and resistor networks; design in the time and frequency domains; op-amps, and analog and digital circuits and applications. Design and lab exercises are also significant components of the course.

Weekly coursework includes interactive video sequences, readings from the textbook, homework, online laboratories, and optional tutorials. The course will also have a final exam.

This is a self-paced course, so there are no weekly deadlines. However, all assignments are due when the course ends.

What You Will Learn

  • How to construct and analyze filters using capacitors and inductors
  • How to use intuition to describe the approximate time and frequency behavior of second-order circuits containing energy storage elements (capacitors and inductors)
  • The relationship between the mathematical representation of first-order circuit behavior and corresponding real-life effects
  • Circuits applications using op-amps
  • Measurement of circuit variables using tools such as virtual oscilloscopes, virtual multimeters, and virtual signal generators
  • How to compare the measurements with the behavior predicted by mathematical models and explain the discrepancies

Prerequisites

You should have a mathematical background of working with calculus and basic differential equations, and a high school physics background in electricity and magnetism. You should also have taken Circuits and Electronics 1 and Circuits and Electronics 2, or have an equivalent background in basic circuit analysis and first order circuits.

Frequently asked questions

Where can I buy the textbook for this course?
You may purchase the physical textbook or its ebook from Elsevier. An online version of the book will also be accessible for free to students who upgrade to the verified certificate track in the course.

Will the text of the lectures be available?
Yes, transcripts of the video lectures in the course will be made available.

Do I need to watch the lectures live?
No, you can watch the lectures at your leisure.

I don ‘t have the prerequisites, can I still take the course?
We do not check students for prerequisites, so you are certainly allowed to try. However, the course does rely on previous experience with the material in Circuits and Electronics 1 and Circuits and Electronics 2. If you do not know these subjects before taking the course, you will have to learn them in parallel with the new material.

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Meet Your Instructors

Anant Agarwal

CEO and Professor of Electrical Engineering and Computer Science, MIT at edX
CEO of edX and Professor of Electrical Engineering and Computer Science at MIT. His research focus is in parallel computer architectures and cloud software systems, and he is a founder of several successful startups, including Tilera, a company that produces scalable multicore processors. Prof. Anant won the Maurice Wilkes prize for computer architecture, and MIT's Smullin and Jamieson prizes for teaching. He is also the 2016 recipient of the Harold W. McGraw, Jr. Prize for Higher Education, which recognized his work in advancing the MOOC movement. Additionally, he is a recipient of the Padma Shri award from the President of India and was named the Yidan Prize for Education Development Laureate in 2018. He holds a Guinness World Record for the largest microphone array, and is an author of the textbook "Foundations of Analog and Digital Electronic Circuits."

Gerald Sussman

Professor, Electrical Engineering at MIT
Professor of Electrical Engineering at MIT. He is a well known educator in the computer science community, perhaps best known as the author of "Structure and Interpretation of Computer Programs," which is universally acknowledged as one of the top ten textbooks in computer science, and as the creator of Scheme, a popular teaching language. His research spans a range of topics, from artificial intelligence, to physics and chaotic systems, to supercomputer design.
Piotr Mitros - Pearson Advance

Piotr Mitros

Former Chief Scientist at edX
Chief Scientist of edX and Research Scientist at MIT. His research focus is in finding ways to apply techniques from control systems to optimizing the learning process. He has worked as an analog designer at Texas Instruments, Talking Lights, and most recently, designed the analog front end for a novel medical imaging modality for Rhythmia Medical.
Chris Terman - Pearson Advance

Chris Terman

Senior Lecturer, Electrical Engineering and Computer Science at MIT
A Senior Lecturer in the MIT Department of Electrical Engineering and Computer Science, Chris has been an award-winning lecturer for this course on campus since 1995. He has four decades of experience as a teacher, digital systems designer and courseware developer. Chris’ recent research is focused on educational technologies for teaching design skills.

Bonnie Lam

Graduate student, Electrical Engineering and Computer Science at MIT
Graduate student in the Department of Electrical Engineering and Computer Science at MIT. Her research interests are digital design methodologies for low-power applications, and she is currently studying low-power techniques for ultrasound imaging. She received her Bachelor of Applied Science (B.A.Sc.) degree in Engineering Physics (Electrical Engineering Option) at the University of British Columbia in 2008 and her Masters of Science (S.M.) degree in Electrical Engineering and Computer Science from Massachusetts Institute of Technology in 2010.

Testimonials

“Brilliant course! It’s definitely the best introduction to electronics in Universe! Interesting material, clean explanations, well prepared quizzes, challenging homeworks and fun labs”

Ilya

“6.002x will be a classic in the field of online learning. It combines Prof. Agarwal’s enthusiasm for electronics and education. The online circuit design program works very well. The material is difficult. I took the knowledge from the class and built an electronic cat feeder.”

Stan

“Brilliant course! It’s definitely the best introduction to electronics in Universe! Interesting material, clean explanations, well prepared quizzes, challenging homeworks and fun labs”

Ilya

“6.002x will be a classic in the field of online learning. It combines Prof. Agarwal’s enthusiasm for electronics and education. The online circuit design program works very well. The material is difficult. I took the knowledge from the class and built an electronic cat feeder.”

Stan

About This Course:

This course from MIT’s Department of Materials Science and Engineering introduces the fundamental principles of quantum mechanics, solid state physics, and electricity and magnetism. We use these principles to describe the origins of the electronic, optical, and magnetic properties of materials, and we discuss how these properties can be engineered to suit particular applications, including diodes, optical fibers, LEDs, and solar cells.

In this course, you will find out how the speed of sound is connected to the electronic band gap, what the difference is between a metal and a semiconductor, and how many magnetic domains fit in a nanoparticle. You will explore a wide range of topics in the domains of materials engineering, quantum mechanics, solid state physics that are essential for any engineer or scientist who wants to gain a fuller understanding of the principles underlying modern electronics.
 

What You’ll Learn:

  • Discover the quantum mechanical origins of materials properties
  • Explain the origin of electronic bands in semiconductors
  • Learn the operating principles of solid state devices such as solar cells and LEDs
  • Understand the materials physics that underlies the optical and magnetic behavior of materials

Prerequisites:

Differential and Integral Calculus University-level Electricity & Magnetism Fundamentals of Materials Science and Engineering, or a knowledge structure and bonding in solid state materials.
 

Who Can Take This Course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Meet Your Instructors:

Polina Anikeeva

Class of 1942 Associate Professor in Materials Science and Engineering at Massachusetts Institute of Technology
Polina Anikeeva received her BS in Physics from St. Petersburg State Polytechnic University in 2003. After graduation, she spent a year at the Los Alamos National Lab where she developed photovoltaic cells based on quantum dots. In 2004 she enrolled in a PhD program in Materials Science at MIT and graduated in 2009 with her thesis dedicated to the design of light emitting devices based on organic materials and nanoparticles. She completed her postdoctoral training in neuroscience at Stanford University, where she created devices for optical stimulation and electrical recording from neural circuits. Polina joined the faculty of the Department of Materials Science and Engineering at MIT in July 2011, where she is now a Class of 1942 career development associate professor. Her lab focuses on the development of flexible and minimally invasive materials and devices for neural recording, stimulation and repair. Polina is also a recipient of NSF CAREER Award, DARPA Young Faculty Award, Dresselhaus Fund Award, and the Technology Review TR35 among others. If you would like to learn more about Prof. Anikeeva’s research interests, take a look at her talk at TEDx Cambridge.

Jessica Sandland

Lecturer & Digital Learning Scientist at Massachusetts Institute of Technology
Jessica Sandland is a Lecturer in the Department of Material Science and Engineering and an MITx Digital Learning Scientist. Jessica leads online learning initiatives in DMSE, creating MOOCs and designing blended courses for MIT students. She has coordinated the development of a wide variety of DMSE’s online courses.