About This Course:

This course from MIT’s Department of Materials Science and Engineering introduces the fundamental principles of quantum mechanics, solid state physics, and electricity and magnetism. We use these principles to describe the origins of the electronic, optical, and magnetic properties of materials, and we discuss how these properties can be engineered to suit particular applications, including diodes, optical fibers, LEDs, and solar cells.

In this course, you will find out how the speed of sound is connected to the electronic band gap, what the difference is between a metal and a semiconductor, and how many magnetic domains fit in a nanoparticle. You will explore a wide range of topics in the domains of materials engineering, quantum mechanics, solid state physics that are essential for any engineer or scientist who wants to gain a fuller understanding of the principles underlying modern electronics.
 

What You’ll Learn:

  • Discover the quantum mechanical origins of materials properties
  • Explain the origin of electronic bands in semiconductors
  • Learn the operating principles of solid state devices such as solar cells and LEDs
  • Understand the materials physics that underlies the optical and magnetic behavior of materials

Prerequisites:

Differential and Integral Calculus University-level Electricity & Magnetism Fundamentals of Materials Science and Engineering, or a knowledge structure and bonding in solid state materials.
 

Who Can Take This Course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Meet Your Instructors:

Polina Anikeeva

Class of 1942 Associate Professor in Materials Science and Engineering at Massachusetts Institute of Technology
Polina Anikeeva received her BS in Physics from St. Petersburg State Polytechnic University in 2003. After graduation, she spent a year at the Los Alamos National Lab where she developed photovoltaic cells based on quantum dots. In 2004 she enrolled in a PhD program in Materials Science at MIT and graduated in 2009 with her thesis dedicated to the design of light emitting devices based on organic materials and nanoparticles. She completed her postdoctoral training in neuroscience at Stanford University, where she created devices for optical stimulation and electrical recording from neural circuits. Polina joined the faculty of the Department of Materials Science and Engineering at MIT in July 2011, where she is now a Class of 1942 career development associate professor. Her lab focuses on the development of flexible and minimally invasive materials and devices for neural recording, stimulation and repair. Polina is also a recipient of NSF CAREER Award, DARPA Young Faculty Award, Dresselhaus Fund Award, and the Technology Review TR35 among others. If you would like to learn more about Prof. Anikeeva’s research interests, take a look at her talk at TEDx Cambridge.

Jessica Sandland

Lecturer & Digital Learning Scientist at Massachusetts Institute of Technology
Jessica Sandland is a Lecturer in the Department of Material Science and Engineering and an MITx Digital Learning Scientist. Jessica leads online learning initiatives in DMSE, creating MOOCs and designing blended courses for MIT students. She has coordinated the development of a wide variety of DMSE’s online courses.

About This Course:

Supply chains are complex systems involving multiple businesses and organizations with different goals and objectives. Many different analytical methods and techniques are used by researchers and practitioners alike to better design and manage their supply chains. This business and management course introduces the primary methods and tools that you will encounter in your study and practice of supply chains. We focus on the application of these methods, not necessarily the theoretical underpinnings.

We will begin with an overview of introductory probability and decision analysis to ensure that students understand how uncertainty can be modeled. Next, we will move into basic statistics and regression. Finally, we will introduce optimization modeling from unconstrained to linear, non-linear, and mixed integer linear programming.

This is a hands-on course. Students will use spreadsheets extensively to apply these techniques and approaches in case studies drawn from actual supply chains

What You’ll Learn:

  • Basic analytical methods
  • How to apply basic probability models
  • Statistics in supply chains
  • Formulating and solving optimization models

Prerequisites:

  • Secondary school algebra and basic mathematics concepts
  • Passing knowledge of statistics and probability

Frequently Asked Questions:

MITx requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. MITx will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the MITx course; revocation of any certificates received for the MITx course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations.

MITx MicroMasters® Credential in Supply Chain Management

The MITx MicroMasters® Credential in Supply Chain Management is specifically designed and administered by MIT’s Center for Transportation & Logistics (CTL) to teach the critical skills needed to be successful in this exciting and growing field. In addition to being a standalone certificate demonstrating expertise in the field, students who complete all of the required courses and the final proctored exam will be qualified to apply to gain credit at MIT for the blended graduate master’s degree program. In order to qualify for the MITx MicroMasters Credential in Supply Chain Management you need to earn a Verified Certificate in all of the required courses. When you register for a Verified Certificate you will also be granted access to additional practice problems, supplemental readings, and opportunities for increased interaction with the faculty and teaching staff.

Who can take this course?

Unfortunately, learners from one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. EdX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Meet Your Instructor:

Chris Caplice

Director, MITx MicroMasters® Program in Supply Chain Management at MIT
Dr. Caplice has been teaching logistics and supply chain management at MIT for over a decade. He is also responsible for the planning and management of the research, education, and corporate outreach programs for the MIT Center for Transportation & Logistics as well as MIT’s Global SCALE Network. He is also the Chief Scientist for Chainalytics, a leading analytical supply chain consulting firm. He received a Ph.D. from MIT in 1996 in Transportation and Logistics Systems, a Master of Science in Civil Engineering from the University of Texas at Austin, and a Bachelor of Science in Civil Engineering from the Virginia Military Institute (VMI).